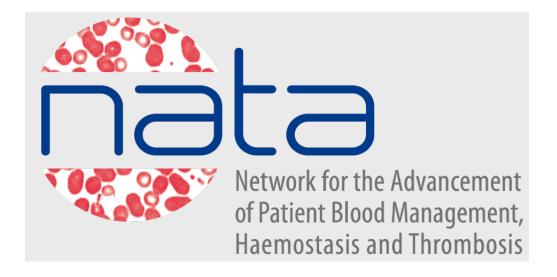
Mise en oeuvre de la Gestion Personnalisée du Sang en Europe et au Canada

Journée de printemps de la SFTS et de la SFVTT, jeudi 18 mai 2017


Jean-François Hardy, MD

Professeur titulaire, Département
d'anesthésiologie de l'Université de Montréal

Déclaration de conflits d'intérêts

- aucun
- Président de NATA

Gestion Personnalisée du Sang

- Importance de la question
- Variabilité de la mise en oeuvre de la GPS en Europe et au Canada
- Mise en oeuvre de la GPS au CHUM:
 - Audit de la pratique transfusionnelle au CHUM pour l'année 2013
 - Causes de l'anémie au CHUM en 2013-14
 - Projet pilote

Ceci n'est pas une pipe.

GPS: pourquoi?

- L'anémie est une condition fréquente (≈ 25% de la population)
- L'anémie préopératoire
 - des transfusions périopératoires
 - de la morbidité/mortalité postop.
- Le traitement de l'anémie préopératoire
 - ♥ les transfusions périop.
 - Améliore le devenir des patients
 - − les coûts associés aux transfusions et aux complications

Prevalence of preoperative anaemia in large observational studies

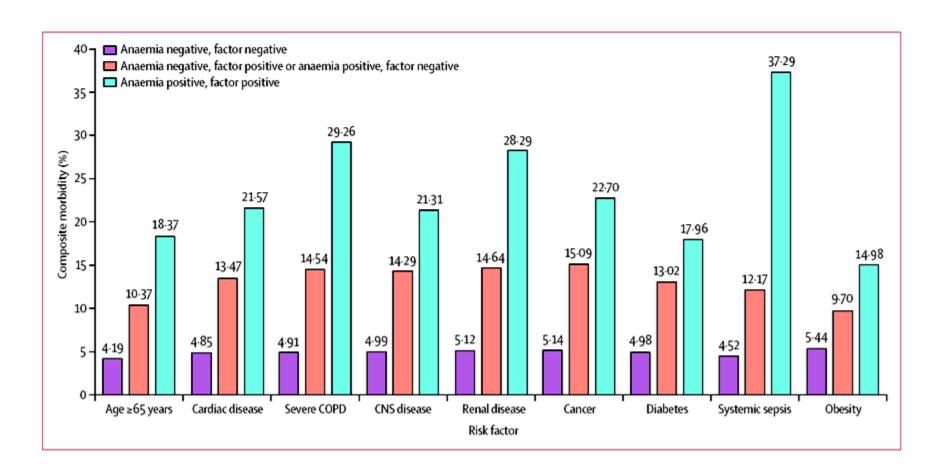
Type of surgery	Anaemia prevalence (%)
Non-cardiac surgery (mixed) ¹⁻³	30–42
Orthopaedic surgery ⁴⁻⁶	10–19
Colorectal surgery ⁷	47.4
Vascular surgery ⁸	47.9
Cardiac surgery ⁹⁻¹³	25–32

Donc environ 30-35% en moyenne

Quizz: l'anémie préopératoire

 Ne modifie pas le pronostic vital postopératoire

 Double, voire triple, la mortalité postopératoire



L'anémie pré-opératoire et la transfusion sont associées à une augmentation de la morbidité/mortalité

Preoperative anaemia & postoperative morbidity in non-cardiac surgery

227425 surgical patients, of whom 69229 (30·44%) had preoperative anaemia

Preoperative anaemia & postoperative mortality in non-cardiac surgery

227425 surgical patients, of whom 69229 (30·44%) had preoperative anaemia

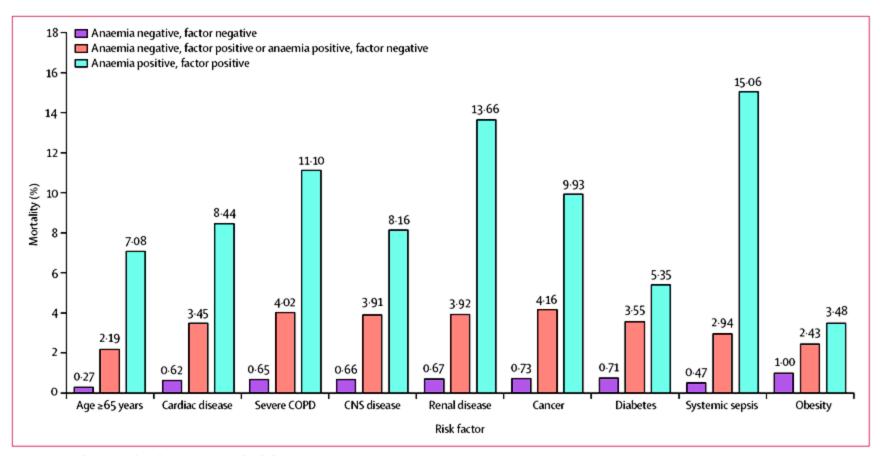


Figure 1: 30-day mortality, by anaemia and risk factor status COPD=chronic obstructive pulmonary disease.

Meta-analysis of the association between preoperative anaemia and mortality after surgery

A. J. Fowler¹, T. Ahmad¹, M. K. Phull², S. Allard³, M. A. Gillies⁴ and R. M. Pearse¹

¹Barts and the London School of Medicine and Dentistry, Queen Mary University of London, and Departments of ²Anaesthesia and ³Haematology, Royal London Hospital, Barts Health NHS Trust, London, and ⁴Department of Anaesthesia, Critical Care and Pain Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK

Correspondence to: Professor R. M. Pearse, Adult Critical Care Unit, Royal London Hospital, London E1 1BB, UK (e-mail: r.pearse@qmul.ac.uk)

Background: Numerous published studies have explored associations between anaemia and adverse outcomes after surgery. However, there are no evidence syntheses describing the impact of preoperative anaemia on postoperative outcomes.

Methods: A systematic review and meta-analysis of observational studies exploring associations between preoperative anaemia and postoperative outcomes was performed. Studies investigating trauma, burns, transplant, paediatric and obstetric populations were excluded. The primary outcome was 30-day or in-hospital mortality. Secondary outcomes were acute kidney injury, stroke and myocardial infarction. Predefined analyses were performed for the cardiac and non-cardiac surgery subgroups. A post boc analysis was undertaken to evaluate the relationship between anaemia and infection. Data are presented as odds ratios (ORs) with 95 per cent c.i.

Results: From 8973 records, 24 eligible studies including 949 445 patients pere identified. Some 371 594 patients (39·1 per cent) were anaemic. Anaemia was associated with increased mortality (OR 2·90, 2·30 to $3\cdot68$; $I^2 = 97$ per cent; P < 0.001), acute kidney injury (OR 3·75, 2·95 to 4·76; $I^2 = 60$ per cent; P < 0.001) and infection (OR 1·93, 1·17 to 3·18; $I^2 = 99$ per cent; P = 0.01). Among cardiac surgical patients, anaemia

Mortality								
Reference	Year	Anaemia	No anaemia	Weight (%) Odds ratio	Odds	s ratio	
Gruson et al.26	2002	5 of 180	3 of 215	1.8	2.02 (0.48, 8.57)			
Cladellas et al.22	2006	9 of 42	10 of 159	2.9	4.06 (1.53, 10.79)		<u> </u>	
Wu et al.40	2007	8660 of 132970	3351 of 177341	5.9	3.62 (3.47, 3.77)			
Bell et al.20	2008	325 of 6143	798 of 30196	5.8	2.06 (1.80, 2.35)		-0-	
Beattie et al.19	2009	76 of 3047	24 of 4632	4.8	4.91 (3.10, 7.79)			
Melis et al.30	2009	14 of 197	5 of 216	2.8	3.23 (1.14, 9.14)			
De Santo et al.23	2009	25 of 320	16 of 727	4.1	3.77 (1.98, 7.16)		_ 	
Shirzad et al.37	2010	26 of 650	35 of 3782	4-6	4.46 (2.67, 7.46)			
Munoz et al.31	2010	12 of 210	19 of 366	3.7	1.11 (0.53, 2.33)	_	-	
Musallam et al.32	2011	3192 of 69229	1240 of 158196	5.9	6-12 (5-73, 6-54)		•	
Boening et al.21	2011	44 of 185	121 of 3126	5-1	7.75 (5.28, 11.38)			
Vochteloo et al.39	2011	30 of 536	31 of 726	4-6	1.33 (0.79, 2.22)	_	-	
Hung et al.28	2011	45 of 1463	13 of 1225	4.2	2.96 (1.59, 5.51)			
Dubljanin-Raspopovic et al.24	2011	19 of 185	12 of 158	3.7	1.39 (0.65, 2.97)	_		
Greenky et al.25	2012	12 of 2991	21 of 12231	3.9	2:34 (1:15, 4:77)			
Ranucci et al.34	2012	51 of 401	30 of 401	4.8	1.80 (1.12, 2.89)			
Oshin and Torella ³³	2013	16 of 193	2 of 167	1.8	7.46 (1.69, 32.93)			-
Saager et al.35	2013	1288 of 119298	811 of 119298	5.9	1.59 (1.46, 1.74)		•	
Gupta et al.27	2013	368 of 15272	206 of 16585	5.8	1.96 (1.65, 2.33)		-0-	
van Straten et al.38	2013	20 of 351	38 of 1385	4.5	2.14 (1.23, 3.73)			
Seicean et al.36	2013	63 of 5879	37 of 18594	5-1	5-43 (3-62, 8-16)			
Jung et al.29	2013	0 of 125	0 of 463		Not estimable			
Zhang et al.41	2013	22 of 432	3 of 223	2.3	3.93 (1.16, 13.29)		<u> </u>	
Baron et al.5	2014	656 of 11 295	604 of 27439	5-9	2.74 (2.45, 3.07)		-0-	
Total		14978 of 371594	7430 of 577 851	100-0	2.90 (2.30, 3.68)		+	
Heterogeneity: $\tau^2 = 0.24$; $\chi^2 =$	768-79	9. 22 d.f., P < 0-00	1: P = 97%					
Test for overall effect: $Z = 8.88$., 57 /0		0-01	0.1	1 10	100
Favours anaemia Favours no anaemia								

Quizz: des deux, quelle est la plus dangereuse?

L'anémie préopératoire

La transfusion

Transfusion & Anaemia

British Journal of Anaesthesia **107** (S1): i41-i59 (2011) doi:10.1093/bja/aer350

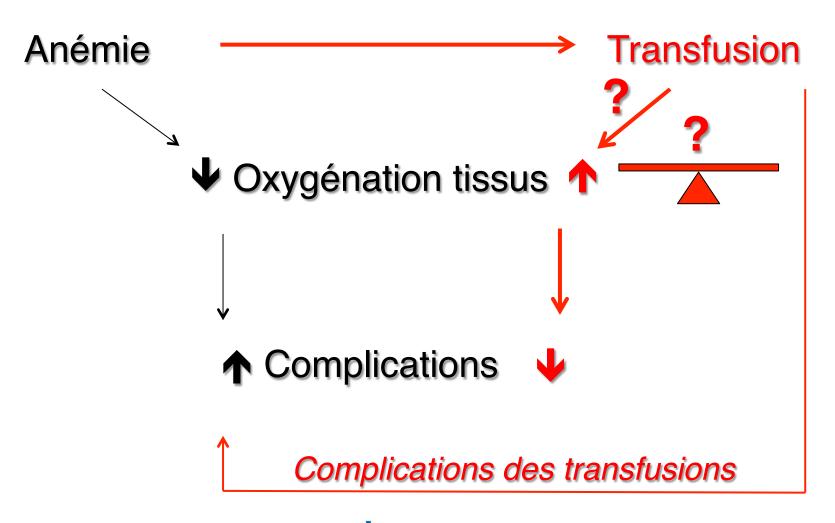
What is really dangerous: anaemia or transfusion?

A. Shander^{1,2,3,4*}, M. Javidroozi¹, S. Ozawa⁵ and G. M. T. Hare^{6,7}

On ne connait pas encore la réponse à cette question mais on sait qu'il vaut mieux éviter les deux

¹Department of Anesthesiology and Critical Care Medicine, Englewood Hospital and Medical Center, Englewood, NJ 07631, USA

² Department of Anesthesiology, ³ Department of Medicine and ⁴ Department of Surgery, Mount Sinai School of Medicine, New York, NY 10029, USA


⁵ Institute for Patient Blood Management and Bloodless Medicine and Surgery, Englewood Hospital and Medical Center, NJ 07631, USA

⁶ Department of Anesthesia, St Michael's Hospital, University of Toronto, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada M5B 1W8

⁷ Department of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8

^{*} Corresponding author. E-mail: aryeh.shander@ehmc.com

Études rétrospectives: "indication bias"

Principes (piliers) de la GPS

1st Pillar Optimize erythropoiesis

2nd Pillar

3rd Pillar

Minimize blood loss & bleeding

Harness & optimize physiological reserve of anaemia

- Detect anemia
- Identify underlying disorder(s) causing anemia
- Manage disorder(s)
- Refer for further evaluation if
- Treat suboptimal iron stores/iron deficiency/anemia of chronic disease/iron-restricted erythropoiesis
- Treat other hematinic deficiencies
- Note: Anemia is a contraindication for elective surgery

- Identify and manage bleeding risk
- Minimising iatrogenic blood loss
- Procedure planning and rehearsal
- Preoperative autologous blood donation (in selected cases or when patient choice)
- Other

- Assess/optimize patient's physiological reserve and risk factors
- Compare estimated blood loss with patient-specific tolerable blood loss
- Formulate patient-specific management plan using appropriate blood conservation modalities to minimize blood loss, optimize red cell mass and manage anemia
- Restrictive transfusion thresholds

Traiter l'anémie préopératoire

Minimiser les pertes sanguines

Seuil transfusionnel restrictif

- - Stimulate erythropoiesis
 - Be aware of drug interactions that can increase anemia

- Vigilant monitoring and management of post-operative bleeding
- Avoid secondary hemorrhage
- Rapid warming / maintain normothermia (unless hypothermia specifically indicated)
- Autologous blood salvage
- Minimizing iatrogenic blood loss
- Hemostasis/anticoagulation management
- Prophylaxis of upper GI hemorrhage
- Avoid/treat infections promptly
- Be aware of adverse effects of medication

- Optimize anemia reserve
- Maximize oxygen delivery
- Minimize oxygen consumption
- Avoid/treat infections promptly
- Restrictive transfusion thresholds

Postoperative

Preoperative

ORIGINAL ARTICLE

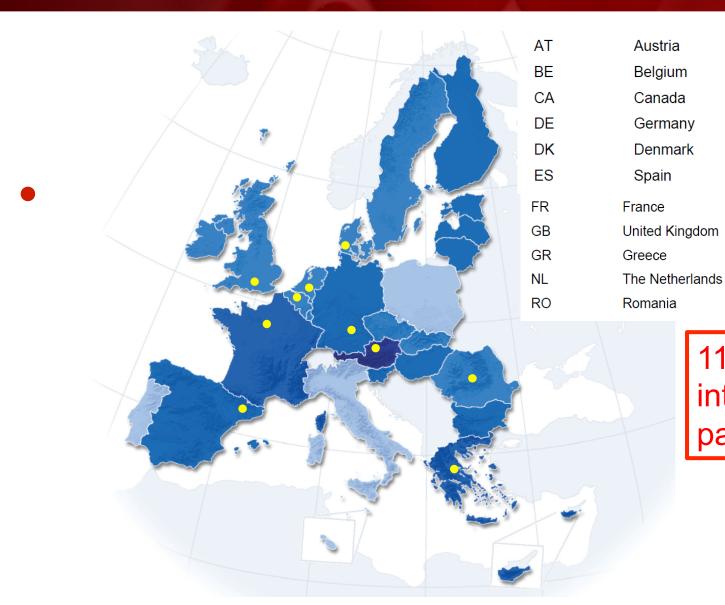
Implementation of patient blood management remains extremely variable in Europe and Canada: the NATA benchmark project

An observational study

Philippe Van der Linden and Jean-François Hardy

NATA Benchmark Project

- Step 1: Evaluation of transfusion practices in different interested centers across Europe and Canada
- Step 2: Implementation of measures of improvement in these different centers according to their own results
- Step 3: Re-evaluation of the practices development of "NATA centers of excellence"
- Step 4: Enlargement of the project to additional centers under the coordination of these centers of excellence.


Total hip replacement (THR)

Total knee replacement (TKR)

Coronary artery bypass graft surgery (CABG)

NATA Benchmark Project

11 centres intéressés par la GPS

Table 1 Analysable data sets by centre

Centre	THR	TKR	CABG	Total
Austria	150	150	149	449
Spain	150	163	0	313
England	154	143	0	297
Denmark	61	75	150	286
Belgium	79	71	48	198
Canada	58	92	36	186
Netherlands	47	34	101	182
Romania	0	0	147	147
Greece	69	32	40	141
France	92	46	0	138
Germany	52	42	0	94
Total	912	848	671	2431

CABG, coronary artery bypass graft; THR, total hip replacement; TKR, total knee replacement.

Table 3 Incidence of preoperative anaemia and its management with iron and/or erythropoietin

		THR		TKR	CABG		
Centre	Anaemia (%)	Anaemia treatment (%)	Anaemia (%)	Anaemia treatment (%)	Anaemia (%)	Anaemia treatment (%)	
1	13.7	2.2	25.2	1.4	22.1	0.0	
2	21.1	0.0	12.1	7.6	37.5	6.2	
3	16.0	4.0	21.0	4.9	38.9	0.0	
4	30.4	2.2	40.0	0.0	n/a	n/a	
5	11.9	0.0	17.6	0.0	24.8	0.0	
6	10.6	10.6	7.1	14.3	n/a	n/a	
7	12.3	40.0	12.8	41.0	n/a	n/a	
B	1117/	n n	201.4	0.0	n/a	n/a	
9	21.3	1.6	19.4	0.0	40.0	15.0	
10	4.7	0.0	2.9	0.0	22.8	1.0	
11	n/a	n/a	n/a	n/a	17.7	0.0	
P value	0.014	< 0.001	< 0.001	< 0.001	0.007	< 0.001	

CABG, coronary artery bypass graft; n/a, not applicable; THR, total hip replacement; TKR, total knee replacement.

Pas de corrélation entre la présence d'une anémie et son traitement entre les hôpitaux ni à l'intérieur même de l'institution

Table 4 Incidence of transfusion and volume of red blood cell transfused in total hip replacement, total knee replacement and coronary artery bypass graft operations

	THR		1	TKR	CABG		
Centre	Transfused patients (%)	RBC volume transfused (%)	Transfused patients (%)	RBC volume transfused (%)	Transfused patients (%)	RBC volume transfused (%)	
1	15.1	23.1	12.9	14.9	54.4	33.3	
2	18.3	37.6	3.0	20.3	37.5	36.7	
3	32.0	39.1	34.6	28.1	47.2	36.1	
4	23.9	31.6	7.5	14.9	n/a	n/a	
5	18.6	31.7	18.9	20.5	20.1	31.7	
6	15.4	20.5	7.1	16.7	n/a	n/a	
7	26.2	17.4	38.5	20.2	n/a	n/a	
8	13.9	24.8	17.6	25.3	n/a	n/a	
9	95.1	24.8	100.0	21.3	95.0	52.3	
10	7.0	12.2	5.9	16.9	56.4	25.6	
11	n/a	n/a	n/a	n/a	59.2	24.7	
P value	< 0.001	0.020	< 0.001	0.162	<0.001	< 0.001	

Transfused RBC volumes were converted to percentage of the preoperative circulating RBC volume (see text for details). CABG, coronary artery bypass graft; n/a, not applicable; RBC, red blood cell; THR, total hip replacement; TKR, total knee replacement.

Variabilité de la pratique transfusionnelle

	THR	TKR	CABG
Anémie préopératoire	4,7 - 30,4%	2,9 - 40%	17,7 – 40%
Traitement de l'anémie préopératoire	0 - 40%	0 - 41%	0 - 15%
Incidence des transfusions	7 – 95%	3 - 100%	20 – 95%

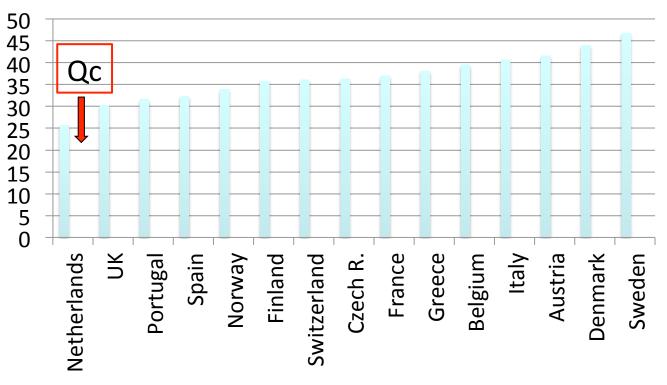
La concentration d'Hb préopératoire, le volume de GR perdu et le sexe féminin étaient des prédicteurs indépendants de transfusion de CG

Nos résultats au CHUM...

	THR	TKR	CABG
Anémie	16%	21%	38,9%
préopératoire	Rang 7/10	Rang 8/10	Rang 6/7
Traitement de l'anémie préopératoire	4%	4,9%	0%
	Rang 4/10	Rang 5/10	Rang 4/7
Incidence des	32%	34,6%	47,2%
transfusions	Rang 9/10	Rang 8/10	Rang 3/7

i.e. beaucoup de place à l'amélioration!

Statistiques Héma-Québec


Nombre et taux de transfusion par 1000 habitants de 2012 à 2015							
Nombre de pro	oduits transfus						
	2012	2013	2014	2015			
Culots	243000	233258	225045	215620			
Plaquettes	36843	36106	34712	33681			
Plasma	46699	45904	45904 40159				
Taux de produ	its transfusés p	ar 1000 habita	nts				
	2012	2013	2014	2015			
Culots	30,1	28,6	27,4	26,1			
Plaquettes	4,6	4,4	4,2	4,1			
Plasma	5,8	5,6	4,9	4,1			

Laquelle de ces affirmations est vraie?

- La France a un taux de transfusions / 1000 habitants plus bas que ceux du Danemark et de la Suède
- La France a le taux de transfusions / 1000 habitants le plus bas de l'UE

Transfusions de GR en Europe

Taux par 1000 habitants

4 programmes réussis

			TraC, nada	Western Australia		Pays Bas		Pittsburgh, USA	
	Mise en oeuvre	2002		2008		2002		2007	
Transfusion and Apheres Science 50 (2014) 32–36									

Britisl F

Adva

Po

A. :

Cente² Dep
³ Dep

⁵ Cen ⁶ Dep ⁷ Divi

⁴ Dep

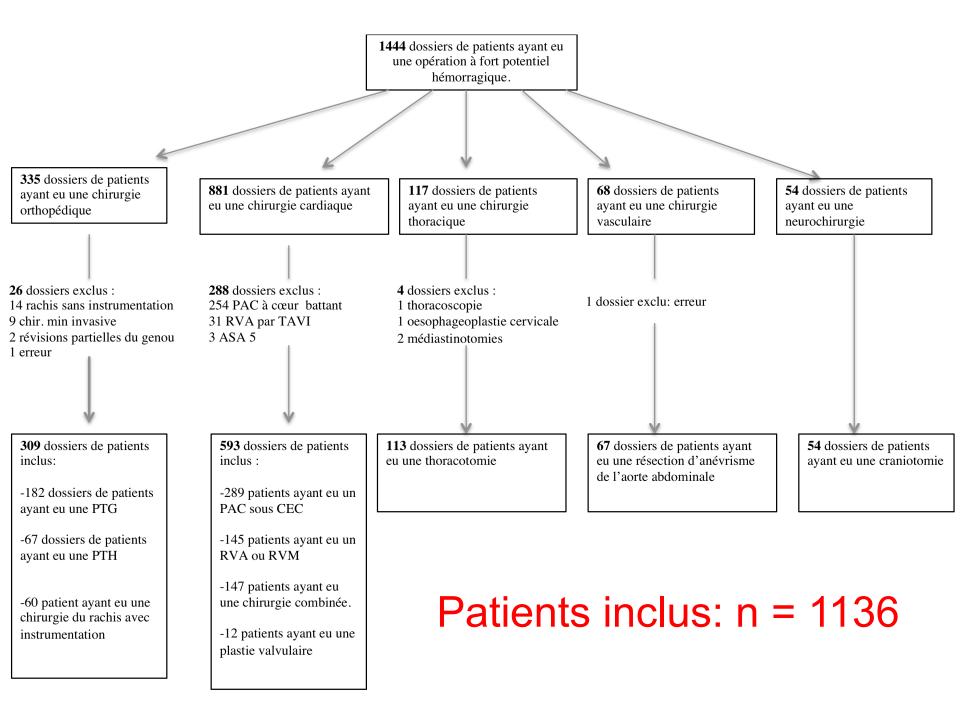
Article

Changes in blood product utilization in a seven-hospital system after the implementation of a patient blood management program: A 9-year follow-up

Nicole M. Verdecchia¹, Mary Kay Wisniewski², Jonathan H. Waters^{1,3}, Darrell J. Triulzi^{4,5}, Louis H. Alarcon⁶, Mark H. Yazer^{4,5}

Department of Anesthesiology, University of Pittsburgh, PA, USA, ²The Donald D. Wolff Jr Center for Quality, Safety, and Innovation at UPMC, Pittsburgh, PA, USA, ³Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA, ⁴Department of Pathology, University of Pittsburgh, PA, USA, ⁶Departments of Surgery and * Corr Critical Care Medicine, University of Pittsburgh, PA, USA

Mise en oeuvre au CHUM


Plan d'affaires présenté le 5 mai 2017 au Ministère de la santé et des services sociaux

Dans le cadre de son mandat, le CCNMT s'est interrogé sur l'état de la situation au Québec. Une étude rétrospective, observationnelle a donc été entreprise au CHUM à l'été 2015

ANÉMIE PRÉ-OPÉRATOIRE ET TRANSFUSIONS PÉRIOPÉRATOIRES: INCIDENCE ET IMPACT SUR LA MORBIDITÉ ET LA MORTALITÉ POSTOPÉRATOIRE AU CHUM

En résumé, au CHUM

- 32% des pts opérés en 2014 pour une cx. à potentiel hémorragique sont anémiques préop
- les pts anémiques sont > 2 fois + transfusés malgré un seuil transfusionnel restrictif
- les pts anémiques ont + de complications
- les pts anémiques meurent + (3,5 vs. 1,5%)
- le seuil anémique de l'OMS est un bon prédicteur du risque de transfusion

Toujours dans le cadre de son mandat, le CCNMT s'est interrogé sur les causes de l'anémie pré-opératoire observée en 2015. Une étude rétrospective, observationnelle a donc été entreprise au CHUM à l'hiver 2016

Caractérisation de l'anémie préopératoire en vue d'améliorer la prise en charge des patients bénéficiant d'une chirurgie à potentiel hémorragique dans le cadre de la Gestion Personnalisée du Sang

En résumé, chez 1030 pts anémiques en 2013-14

- 29,7% des anémies sont investiguées
- Cause connue + soupçonnée = 52,4%
- 24,2% des anémies sont traitées (souvent mal...)
- Une forte proportion des anémies pourraient être traitées avec fer iv et/ou EPO

Mise en oeuvre de la GPS au CHUM

- Projet hospitalier qui implique tous les intervenants du milieu
 - médecins (anesthésiologistes, hématologues, internistes, chirurgiens, intensivistes, obstétriciens-gynécologues)
 - infirmières (tous les secteurs), perfusionnistes, inhalothérapeutes, chargés de sécurité transfusionnelle
 - pharmaciens
 - administrateurs

Mise en oeuvre de la GPS selon le modèle de Kotter

D9 - PBM Implementation Guide

EU-PBM

EU guide for Member States on good practices for patient blood management

CAP: population visée

- correction de l'anémie chez les patients bénéficiant d'une chirurgie à risque hémorragique
- spécialités visées: orthopédie, chir.
 cardiaque, chir. vasculaire, chir. thoracique, neurochirurgie, chir. hépato-biliaire, urologie, gynécologie
- procédures ciblées dans chaque spécialité

CAP: nombre de patients concernés

• Statistiques revues pour 2013 - 2015

```
- 2013: 4616
- 2014: 4719
- moyenne de 4720 pts/année
- 2015: 4826
```

 Nombre de patients anémiques attendu par année = 1520 (32,2% du total)

Processus clientèle

- Évaluation préopératoire (pré-admission)
- Si anémie référé CAP pour bilan
- Diagnostic par MD
 Rx fer ± EPO
- 3 4 visites pour traitement et mesure Hb
- OK pour chirurgie lorsque anémie corrigée

Traitements prévus

- 30%: diagnostic impossible dans un délai raisonnable
- 10%: fer p.o. en externe
- 10%: fer i.v. à la CAP
- 5%: IRC traités avec EPO à la dose usuelle
- 45%: anémie inflammatoire EPO ± fer i.v.

Total des coûts prévus

Infirmière clinicienne

\$72 000

Analyses de laboratoire

\$22 040

• Hemocue[®] (\$1700 achat)

\$10 000

• Fer i.v.

\$174 648

Érythropoiétine

\$1 037 345

Total

\$1 317 733

Économies escomptées

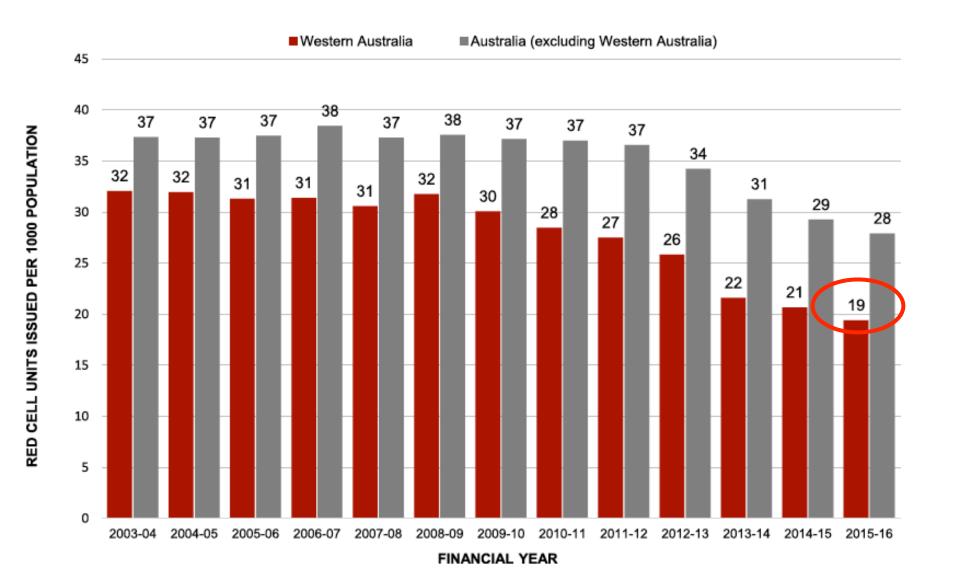
- Coût des transfusions évitées
- \$600/unité: production + manipulations intra-hospitalières
- Économie de 2,6 CG/patient anémique (\$1560)
- 70% des patients traités = 1064 patients
- 1064 patients x \$1560 = \$1 659 840

Économies escomptées

- Toutes les dépenses reliées aux transfusions: \$1400 par transfusion
 - coût d'achat + manipulations intrahospitalières
 - traitement des complications des transfusions
 - diminution de la durée de séjour
- 1064 pts x 2,6 CG x \$1400 = \$3 872 960

Évaluation du programme

- Variables d'intérêt ("Endpoints")
 - valides et fiables
 - reproductibles
 - facilement mesurables
- Doivent correspondre aux besoins
 - d'un économiste de la santé
 - d'un statisticien



En résumé, le projet pilote au CHUM

- Amélioration de la qualité des soins
 - diminution des transfusions
 - diminution de la morbi-mortalité
- Économie directe de plus de \$340 000
- Économies plus importantes pour le système de santé: plus de \$2 550 000 (excluant la diminution de mortalité)
- Projet pilote à étendre à tout le Québec

Notre objectif...

Le "Nouveau CHUM"

